Abstract
As an extension of the classical job shop scheduling problem, flexible job shop scheduling problem (FJSP) is considered as a challenge in manufacturing systems for its complexity and flexibility. Meta-heuristic algorithms are shown effective in solving FJSP. However, the multiple critical paths issue, which has not been formally discussed in the existing literature, is discovered to be a primary obstacle for further optimization by meta-heuristics. In this paper, a hybrid Jaya algorithm integrated with Tabu search is proposed to solve FJSP for makespan minimization. Two Jaya operators are designed to improve solutions under a two-vector encoding scheme. During the local search phase, three approaches are proposed to deal with multiple critical paths and have been evaluated by experimental study and qualitative analyses. An incremental parameter setting strategy and a makespan estimation method are employed to speed up the searching process. The proposed algorithm is compared with several state-of-the-art algorithms on three well-known FJSP benchmark sets. Extensive experimental results suggest its superiority in both optimality and stability. Additionally, a real world scheduling problem, including six instances with different scales, is applied to further prove its ability in handling large-scale scheduling problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.