Abstract

Near-infrared spectroscopy (NIRS) including diffuse optical tomography is an imaging modality which makes use of diffuse light propagation in random media. When optical properties of a random medium are investigated from boundary measurements of reflected or transmitted light, iterative inversion schemes such as the Levenberg–Marquardt algorithm are known to fail when initial guesses are not close enough to the true value of the coefficient to be reconstructed. In this paper, we investigate how this weakness of iterative schemes is overcome using Markov chain Monte Carlo. Using time-resolved measurements performed against a polyurethane-based phantom, we present a case that the Levenberg–Marquardt algorithm fails to work but the proposed hybrid method works well. Then, with a toy model of diffuse optical tomography we illustrate that the Levenberg–Marquardt method fails when it is trapped by a local minimum but the hybrid method can escape from local minima by using the Metropolis–Hastings Markov chain Monte Carlo algorithm until it reaches the valley of the global minimum. The proposed hybrid scheme can be applied to different inverse problems in NIRS which are solved iteratively. We find that for both numerical and phantom experiments, optical properties such as the absorption and reduced scattering coefficients can be retrieved without being trapped by a local minimum when Monte Carlo simulation is run only about 100 steps before switching to an iterative method. The hybrid method is compared with simulated annealing. Although the Metropolis–Hastings MCMC arrives at the steady state at about 10,000 Monte Carlo steps, in the hybrid method the Monte Carlo simulation can be stopped way before the burn-in time.

Highlights

  • In near-infrared spectroscopy (NIRS), we estimate optical properties of biological tissue by solving inverse diffuse problems [1,2]. Such inverse problems are commonly solved by means of iterative methods

  • In the case of a homogeneous medium, absorption and reduced scattering coefficients of the medium can be obtained with iterative methods such as the Levenberg–Marquardt algorithm

  • We propose an MCMC-iterative hybrid method by combining Algorithms 1 with the Metropolis–Hastings Markov chain Monte Carlo

Read more

Summary

Introduction

In near-infrared spectroscopy (NIRS), we estimate optical properties of biological tissue by solving inverse diffuse problems [1,2]. Such inverse problems are commonly solved by means of iterative methods. In the case of a homogeneous medium, absorption and reduced scattering coefficients of the medium can be obtained with iterative methods such as the Levenberg–Marquardt algorithm [3,4] from time-resolved measurements (for example, see the review article [5]). Since the region of interest on the head can be small, it is possible to assume a simple geometry of the half space. Quantitative measurements of inter-regional differences in neuronal activity requires accurate estimates of optical properties

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.