Abstract

Local scour depth at complex piers (LSCP) cause expensive costs when constructing bridges. In this study, a hybrid artificial intelligence approach of random subspace (RS) meta classifier, based on the reduced error pruning tree (REPTree) base classifier, namely RS-REPTree, was proposed to predict the LSCP. A total of 122 laboratory datasets were used and portioned into training (70%: 85 cases) and validation (30%: 37 cases) datasets for modeling and validation processes, respectively. The statistical metrics such as mean absolute error (MAE), root mean squared error (RMSE), correlation coefficient (R), and Taylor diagram were used to check the goodness-of-fit and performance of the proposed model. The capability of this model was assessed and compared with four state-of-the-art soft-computing benchmark algorithms, including artificial neural network (ANN), support vector machine (SVM), M5P, and REPTree, along with two empirical models, including the Florida Department of Transportation (FDOT) and Hydraulic Engineering Circular No. 18 (HEC-18). The findings showed that machine learning algorithms had the highest goodness-of-fit and prediction accuracy (0.885 < R < 0.945) in comparison to the other models. The results of sensitivity analysis by the proposed model indicated that pile cap location (Y) was a more sensitive factor for LSCP among other factors. The result also depicted that the RS-REPTree ensemble model (R = 0.945) could well enhance the prediction power of the REPTree base classifier (R = 0.885). Therefore, the proposed model can be useful as a promising technique to predict the LSCP.

Highlights

  • Local scour is responsible for most bridge failures around the world every year

  • According to the test/validation dataset, the result indicated that the best values for the number of seed and iteration based on the lowest root mean squared error (RMSE) metric (0.0181) were 6 and 10, respectively (Figure 4a,b)

  • The complexity of the scour mechanisms at piers with non-uniform geometry caused the inaccuracy in the empirical methods presented for scouring prediction at these piers

Read more

Summary

Introduction

Local scour is responsible for most bridge failures around the world every year. The flow interferes with bridge piers and leads to the creation of multiple vortices, which remove sediment in the vicinity of the piers, and a scour hole is formed [1]. When the scour hole deepens sufficiently, it causes bridge failure. The failures significantly increase the costs of temporary maintenance and ecological impacts on downstream ecosystems, such as spawning beds [2]. Because of the complicated process of scour around bridge piers, the local scour depth at complex pier Overestimation of LSCP may lead to extra construction costs and even bridge failure around their foundations [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.