Abstract
In genetic regulatory networks, the diffusion effects of mRNA and protein play a key role in regulatory mechanisms of gene expression, especially in translation and transcription. Hybrid impulsive and sampled-data controller are proposed in this paper. By constructing a suitable Lyapunov functional, and utilizing average impulsive interval approach, finite-time stabilization criteria are derived for fractional-order delayed reaction–diffusion genetic regulatory networks (FDRDGRNs). Meanwhile, impulsive control gains and sampled-data control gains are obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show the applicability of the proposed scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have