Abstract

Combining the dimension splitting method with the improved complex variable element-free Galerkin method, a hybrid improved complex variable element-free Galerkin (H-ICVEFG) method is presented for three-dimensional potential problems. Using the dimension splitting method, a three-dimensional potential problem is transformed into a series of two-dimensional ones which can be solved with the improved complex variable element-free Galerkin (ICVEFG) method. In the ICVEFG method for each two-dimensional problem, the improved complex variable moving least-square (ICVMLS) approximation is used to obtain the shape functions, and the penalty method is used to apply the essential boundary conditions. Finite difference method is used in the one-dimensional direction. And Galerkin weak form of three-dimensional potential problem is used to obtain the final discretized equations. Then the H-ICVEFG method for three-dimensional potential problems is presented. Four numerical examples are given to show that the new method has higher computational efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call