Abstract
The Electrocardiogram (ECG) signal records the electrical activity of the heart. It is very difficult for physicians to analyze the ECG signal if noise is embedded during acquisition to inspect the heart’s condition. The denoising of electrocardiogram signals based on the genetic particle filter algorithm(GPFA) using fuzzy thresholding and ensemble empirical mode decomposition (EEMD) is proposed in this paper, which efficiently removes noise from the ECG signal. This paper proposes a two-phase scheme for eliminating noise from the ECG signal. In the first phase, the noisy signal is decomposed into a true intrinsic mode function (IMFs) with the help of EEMD. EEMD is better than EMD because it removes the mode-mixing effect. In the second phase, IMFs which are corrupted by noise is obtained by using spectral flatness of each IMF and fuzzy thresholding. The corrupted IMFs are filtered using a GPF method to remove the noise. Then, the signal is reconstructed with the processed IMFs to get the de-noised ECG. The proposed algorithm is analyzed for a different local hospital database, and it gives better root mean square error and signal to noise ratio than other existing techniques (Wavelet transform (WT), EMD, Particle filter(PF) based method, extreme-point symmetric mode decomposition with Nonlocal Means(ESMD-NLM), and discrete wavelet with Savitzky-Golay(DW-SG) filter).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have