Abstract

Traditionally, the permutation flowshop scheduling problem (PFSP) was with the criterion of minimizing makespan. The permutation flowshop scheduling problem to minimize the total flowtime has attracted more attention from researchers in recent years. In this paper, a hybrid genetic local search algorithm is proposed to solve this problem with each of both criteria. The proposed algorithm hybridizes the genetic algorithm and a novel local search scheme that combines two local search methods: the Insertion Search (IS) and the Insertion Search with Cut-and-Repair (ISCR). It employs the genetic algorithm to do the global search and two local search methods to do the local search. Two local search methods play different roles in the search process. The Insertion Search is responsible for searching a small neighborhood while the Insertion Search with Cut-and-Repair is responsible for searching a large neighborhood. Furthermore, the orthogonal-array-based crossover operator is designed to enhance the GA’s capability of intensification. The experimental results show the advantage of combining the two local search methods. The performance of the proposed hybrid genetic algorithm is very competitive. For the PFSP with the total flowtime criterion, it improved 66 out of the 90 current best solutions reported in the literature in short-term search and it also improved all the 20 current best solutions reported in the literature in long-term search. For the PFSP with the makespan criterion, the proposed algorithm also outperforms the other three methods recently reported in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call