Abstract

Batch dispersion problem (BDP) restricts batch traceability in large-scale discrete production and negatively impacts batch recall costs. However, previous research has ignored the complexity of the BDP in their analyses. This paper investigates the BDP under the composed bill of materials (BOM) and develops a mathematical model for the BDP with the goal of minimizing the total batch dispersion by utilizing the batch dispersion as a measure of the degree of dispersed usage of part batches. BDP-GAVNS, a hybrid genetic algorithm with variable neighborhood search, is devised for the BDP based on the demonstration that the BDP is an NPC problem. In BDP-GAVNS, memory banks were introduced to increase the diversity of individuals performing crossover operations. Additionally, the encoding method and infeasible solution repair program are designed according to the characteristics of BDP. Numerical experiments validate the viability and effectiveness of BDP-GAVNS in solving BDP. They demonstrate that (1) the optimal combination occurs when the ratio of individuals produced by the three types of population initialization methods, namely global selection (GS), local selection (LS), and random selection (RS), to the population takes values of 0.30, 0.10, and 0.60, respectively; (2) The memory bank enriches the source of individuals required for crossover operations and improves the performance of crossover operations; and (3) The BDP-GAVNS is more effective than the other five heuristic algorithms including genetic algorithms in seeking the optimal solution of BDP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.