Abstract

Distribution feeder reconfiguration (DFR) is formulated as a multi-objective optimization problem which minimizes real power losses, deviation of the node voltages and the number of switching operations and also balances the loads on the feeders. In the proposed method, the distance (λ 2 norm) between the vector-valued objective function and the worst-case vector-valued objective function in the feasible set is maximized. In the algorithm, the status of tie and sectionalizing switches are considered as the control variables. The proposed DFR problem is a non-differentiable optimization problem. Therefore, a new hybrid evolutionary algorithm based on combination of fuzzy adaptive particle swarm optimization (FAPSO) and ant colony optimization (ACO), called HFAPSO, is proposed to solve it. The performance of HFAPSO is evaluated and compared with other methods such as genetic algorithm (GA), ACO, the original PSO, Hybrid PSO and ACO (HPSO) considering different distribution test systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.