Abstract

Continuity of accurate navigational data for intelligent transportation applications has been widely provided by utilizing low-cost navigation systems through integrating GPS with micro-electro-mechanical-system (MEMS) inertial sensors. To achieve the required accuracy, augmentation of Kalman filter (KF) with nonlinear error modeling techniques such as fast orthogonal search (FOS) was introduced to enhance the navigational solution by estimating and eliminating a great part of both linear and nonlinear errors of azimuth angle sensed by MEMS gyro. Although this augmented approach enhanced the overall navigational accuracy to some extent, it still suffers from some drawbacks that diverge the system accuracy during GPS long outage periods. These drawbacks stem from the wide-variational behavior and high nonlinearities of the errors in MEMS gyros which make it difficult to depend on the non-adaptive linear error model provided by KF to model the two types of MEMS azimuth errors.In this paper we tried to minimize the effect of uncertainties associated with the KF azimuth prediction during the absence of GPS by introducing a hybrid error model which employs support vector machine (SVM) to model the KF output and FOS, based on autoregressive (AR) concept, to model the nonlinear azimuth errors. The performance of the proposed hybrid SVM-FOS approach is evaluated for GPS/ RISS (Reduced inertial sensor system integrated system) and the results were compared with the conventional KF and augmented KF-FOS approaches.

Highlights

  • For several years, development of low-cost inertial navigation systems has been made possible by the great advances in MEMS technology

  • Experimental results show that support vector machine (SVM) can replace Kalman filter (KF) to predict azimuth linear error in case of GPS outage and Fast orthogonal search (FOS) succeeded to model azimuth nonlinear errors

  • KF is an acceptable estimator for linear errors but due to inherent nonlinear errors of MEMS and its highly varied output, KF only is not suitable for error compensation in MEMS gyro

Read more

Summary

Introduction

Development of low-cost inertial navigation systems has been made possible by the great advances in MEMS technology. Small size and light weight with low cost characterize MEMS inertial measurement units (IMUs) compared to high-end inertial sensors. These merits of MEMS sensors made it attractive choice for navigation in intelligent transportation applications (Angrisano 2010). MEMS IMUs are used in conjunction with aiding sensors to overcome their drawbacks where the aiding sensor is selected based on the application (Poshtan et al 2014). MEMS inertial sensors combined with GPS have become the principal approach where real time position and attitude estimation is being

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.