Abstract
This study introduces a novel Hybrid Ensemble Machine-Learning (HEML) algorithm to merge long-term satellite-based reanalysis precipitation products (SRPPs), enabling the estimation of super drought events in the Lake Victoria Basin (LVB) during the period of 1984 to 2019. This study considers three widely used Machine learning (ML) models, including RF (Random Forest), GBM (Gradient Boosting Machine), and KNN (k-nearest Neighbors), for the emerging HEML approach. The three SRPPs, including CHIRPS (Climate Hazards Group Infra-Red Precipitation with Station), ERA5-Land, and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record), were used to merge for developing new precipitation estimates from HEML model. Additionally, classification and regression models were employed as base learners in developing this algorithm. The newly developed HEML datasets were compared with other ML and SRPP products for super-drought monitoring. The Standardized precipitation evapotranspiration index (SPEI) was used to estimate super drought characteristics, including Drought frequency (DF), Drought Duration (DD), and Drought Intensity (DI) from machine learning and SRPPs products in LVB and compared with RG observation. The results revealed that the HEML algorithm shows excellent performance (CC = 0.93) compared to the single ML merging method and SRPPs against observation. Furthermore, the HEML merging product adeptly captures the spatiotemporal patterns of super drought characteristics during both training (1984–2009) and testing (2010–2019) periods. This research offers crucial insights for near-real-time drought monitoring, water resource management, and informed policy decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.