Abstract

Batch processing machines (BPMs) have important applications in a variety of industrial systems. This paper considers the problem of scheduling two BPMs in a flow shop with arbitrary release times and blocking such that the makespan is minimised. The problem is formulated as a mixed integer programming model. Subsequently, a hybrid discrete differential evolution (HDDE) algorithm is proposed. In the algorithm, individuals in the population are first represented as discrete job sequences, and mutation and crossover operators are applied based on the representation. Second, after using the first-fit rule to form batches, a novel least idle/blocking time heuristic is developed to schedule the batches in the flow shop. Furthermore, an effective local search technique is embedded in the algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by comparing its results to a commercial solver (CPLEX), a genetic algorithm and a simulated annealing algorithm. Computational experiments demonstrate the superiority of the HDDE algorithm in terms of solution quality, robustness and run time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.