Abstract

This work presents a hybrid stochastic-deterministic algorithm for optimal design of process flowsheets, i.e., finding the optimal design variables and operating conditions of multiple interconnected units using rigorous phenomenological chemical engineering models. Unlike previous studies that propose hybrid deterministic and stochastic algorithms in sequential and nested arrangements, the present work proposes a parallel configuration to perform the hybridization. The proposed hybrid algorithm combines a stochastic method (SM) with the deterministic Discrete-Steepest Descent Algorithm with Variable Bounding (DSDA-VB). The SM and DSDA-VB strategies interact in parallel by exchanging new feasible solutions identified by the SM and improved search bounds determined by the DSDA-VB. The proposed method is illustrated using a thermally coupled system and a sequence of reactive, extractive, and traditional distillation columns. The results indicate that the proposed algorithm outperforms the traditional Differential Evolution with Tabu List (DETL) algorithm, showing faster and improved convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.