Abstract

Current multimedia applications are characterized by highly dynamic and non-deterministic behaviour as well as high-performance requirements. Potentially, partially reconfigurable fine-grain configurable architectures like FPGAs can be reconfigured at run-time to match the dynamic behaviour. However, the lack of programming support for dynamic task placement as well as the large configuration overhead has prevented their use for highly dynamic applications. To cope with these two problems, we have adopted an FPGA model with specific support for task allocation. On top of this model, we have applied an existing hybrid design-time/run-time scheduling flow initially developed for multiprocessor systems. Finally, we have extended this flow with specific modules that greatly reduce the reconfiguration overhead making it affordable for current multimedia applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call