Abstract
Abstract The estimation of remaining useful life (RUL) for lithium-ion batteries is an essential part for battery management system (BMS). A hybrid method is presented which is combining principal component analysis (PCA), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), sparrow search algorithm (SSA), Elman neural network (Elman-NN), and gaussian process regression (GPR) to forecast battery RUL. Firstly, in the data preprocessing stage, the PCA+ICEEMDAN algorithm is creatively proposed to extract features of capacity decay and fluctuation. The PCA method is used to reduce the dimensionality of the extracted indirect health indicators (HIs), and then the ICEEMDAN algorithm is introduced to decompose the fused HI sequence and actual capacity data into residuals and multiple Intrinsic mode functions (IMFs). Secondly, in the prediction stage, feature data is corresponded one to-one with the mixed model. The prediction models of SSA-Elman algorithm and GPR algorithm are established, with the SSA-Elman algorithm predicting the capacity decay trend and the GPR algorithm quantifying the uncertainty caused by the capacity regeneration phenomenon. The final prediction results are obtained by superimposing the two sets of prediction data, and the prediction error and RUL are calculated. The effectiveness of the proposed hybrid approach is validated by RUL prediction experiments on three kinds of batteries. The comparative experimental results indicate that the mean absolute error (MAE) and root mean square error (RMSE) of the presented prediction model for lithium-ion battery capacity are less than 0.7% and 1.0%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Energy Conversion and Storage
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.