Abstract

Biologically-inspired algorithms are stochastic search methods that emulate the behavior of natural biological evolution to produce better solutions and have been widely used to solve engineering optimization problems. In this paper, a new hybrid algorithm is proposed based on the breeding behavior of cuckoos and evolutionary strategies of genetic algorithm by combining the advantages of genetic algorithm into the cuckoo search algorithm. The proposed hybrid cuckoo search-genetic algorithm (CSGA) is used for the optimization of hole-making operations in which a hole may require various tools to machine its final size. The main objective considered here is to minimize the total non-cutting time of the machining process, including the tool positioning time and the tool switching time. The performance of CSGA is verified through solving a set of benchmark problems taken from the literature. The amount of improvement obtained for different problem sizes are reported and compared with those by ant colony optimization, particle swarm optimization, immune based algorithm and cuckoo search algorithm. The results of the tests show that CSGA is superior to the compared algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.