Abstract
Tibetan person name recognition is one of the most difficult tasks in the area of Tibetan information processing, and the effect of recognition impacts directly on the precision of Tibetan word segmentation and the performance of relative application systems, including Tibetan-Chinese machine translation, Tibetan informationretrieval, text categorization, etc. Based on the analysis of wording rules and features of Tibetan person names, this paper proposes a method which combines maximum entropy and conditional random fields to identify Tibetan person names. The experiment shows that this approach works quite well, with the value of F1-measure reaching 93.29%. Copyright Information:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.