Abstract

We present a hybrid approach to simulate global illumination and soft shadows at interactive frame rates. The strengths of hardware-accelerated GPU techniques are combined with CPU methods to achieve physically consistent results while maintaining reasonable performance. The process of image synthesis is subdivided into multiple passes accounting for the different illumination effects. While direct lighting is rendered efficiently by rasterization, soft shadows are simulated using a novel approach combining the speed of shadow mapping and the accuracy of visibility ray tracing. A shadow refinement mask is derived from the result of the direct lighting pass and from a small number of shadow maps to identify the penumbral region of an area light source. This region is accurately rendered by ray tracing. For diffuse indirect illumination, we introduce radiosity photons to profit from the flexibility of a point-based sampling while maintaining the benefits of interpolation over scattered data approximation or density estimation. A sparse sampling of the scene is generated by particle tracing. An area is approximated for each point sample to compute the radiosity solution using a relaxation approach. The indirect illumination is interpolated between neighboring radiosity photons, stored in a multidimensional search tree. We compare different neighborhood search algorithms in terms of image quality and performance. Our method yields interactive frame rates and results consistent with path tracing reference solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.