Abstract
Monte Carlo (MC) ray-tracing for photo-realistic rendering often requires hours to render a single image due to the large sampling rates needed for convergence. Previous methods have attempted to filter sparsely sampled MC renders but these methods have high reconstruction overheads. Recent work has shown fast performance for individual effects, like soft shadows and indirect illumination, using axis-aligned filtering. While some components of light transport such as indirect or area illumination are smooth, they are often multiplied by high-frequency components such as texture, which prevents their sparse sampling and reconstruction. We propose an approach to adaptively sample and filter for simultaneously rendering primary (defocus blur) and secondary (soft shadows and indirect illumination) distribution effects, based on a multi-dimensional frequency analysis of the direct and indirect illumination light fields. We describe a novel approach of factoring texture and irradiance in the presence of defocus blur, which allows for pre-filtering noisy irradiance when the texture is not noisy. Our approach naturally allows for different sampling rates for primary and secondary effects, further reducing the overall ray count. While the theory considers only Lambertian surfaces, we obtain promising results for moderately glossy surfaces. We demonstrate 30x sampling rate reduction compared to equal quality noise-free MC. Combined with a GPU implementation and low filtering over-head, we can render scenes with complex geometry and diffuse and glossy BRDFs in a few seconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.