Abstract

It is well known that particle breakage plays a critical role in the mechanical behavior of granular materials and has been a topic subject to intensive studies. This paper presents a three dimensional fracture model in the context of combined finite-discrete element method (FDEM) to simulate the breakage of irregular shaped granular materials, e.g., sands, gravels, and rockfills. In this method, each particle is discretized into a finite element mesh. The potential fracture paths are represented by pre-inserted non-thickness cohesive interface elements with a progressive damage model. The Mohr–Coulomb model with tension cut-off is employed as the damage initiation criterion to rupture the predominant failure mode at the particle scale. The particle breakage modeling using combined FDEM is validated by the qualitative agreement between the results of simulated single particle crushing tests and those obtained from laboratory tests and prior DEM simulations. A comprehensive numerical triaxial tests are carried out on both the unbreakable and breakable particle assemblies with varied confining pressure and particle crushability. The simulated stress–strain–dilation responses of breakable granular assembly are qualitatively in good agreement with the experimental observations. The effects of particle breakage on the compressibility, shear strength, volumetric response of the fairly dense breakable granular assembly are thoroughly investigated through a variety of mechanism demonstrations and micromechanical analysis. This paper also reports the energy input and dissipation behavior and its relation to the mechanical response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.