Abstract
<p>With a recent spread of intelligent information systems, massive data collections with a lot of repeated and unintentional, unwanted interference oriented data are gathered and a huge feature set are being operated. Higher dimensional inputs, on the other hand, contain more correlated variables, which might have a negative impact on model performance. In our model a Hybrid method of selecting feature was developed by combining Binary Gravitational Search Particle Swarm Optimization (HBGSPSO) method with an Enhanced Convolution Neural Network Bidirectional Long Short Term Memory (ECNN-BiLSTM). In our proposed system, the Bidirectional Long Short Term Memory (BiLSTM) is introduced which extracts the hidden dynamic data and utilizes the memory cells to think of long-term historical data after the convolution process. In this paper, thirteen well-defined datasets are used from the machine learning database of UC Irvine to evaluate the efficiency of the proposed system. The experiments are conducted using K Nearest Neighbor (KNN) and Decision Tree (DT) which are used as classifiers to evaluate the outcome of selected features. The outcomes are contrasted and compared with the bio-enlivened calculations like Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Optimization protocol using Particle Swarm Optimization (PSO).</p> <p>&nbsp;</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.