Abstract

A wide variety of demand in e-learning and web-based learning caused a new approach in e-content presentation. In order to accomplish these demands, learning object repositories (LORs) were developed. LORs have many learning objects (LOs) that are used to produce different types of e-content. When there are many LOs in LORs, the evaluation and selection of them become a subjective and time-consuming process. Thus, selecting the most suitable and best qualified LO is considered as a multi-criteria decision-making (MCDM) problem. In this study, a hybrid analytic hierarchy process genetic algorithm (AHP-GA) method was developed for the evaluation of LOs from web-based Intelligent Learning Object Framework (Zonesa) LOR. This proposed hybrid system was used in a real case study and the results demonstrated that the proposed system can be used effectively by both users and machines to produce content by the help of LO metadata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.