Abstract
This paper introduces a novel hybrid adaptive cuckoo search (HACS) algorithm to establish the parameters of chaotic systems. In order to balance and enhance the accuracy and convergence rate of the basic cuckoo search (CS) algorithm, the adaptive parameters adjusting operation is presented to tune the parameters properly. Besides, the exploitation capability of the CS algorithm is enhanced a lot by integrating the orthogonal design strategy. The functionality of the HACS algorithm is tested through the Lorenz system under the noise-free and noise-corrupted conditions, respectively. The numerical results demonstrate that the algorithm can estimate parameters efficiently and accurately, and the capability of noise immunity is also powerful. Compared with the basic CS algorithm, genetic algorithm, and particle swarm optimization algorithm, the HACS algorithm is energy efficient and superior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.