Abstract

We have developed a series of immortal human-human hybrid cell lines that express phenotypic characteristics of primary oligodendrocytes, by fusing a 6-thioguanine-resistant mutant of the human rhabdomyosarcoma RD with adult human oligodendrocytes by a lectin-enhanced polyethylene glycol procedure. Hybrids were selected in an aminopterin-containing media. In contrast to the tumor parent cells, a hybrid clone M03.13 expressed surface immunoreactivity for galactosyl cerebroside and intracellular immunoreactivity for myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP). Serum deprivation or chronic treatment with a protein kinase C activator 4-beta-phorbol 12-myristate 13-acetate (PMA), but not dibutyl cyclic adenosine monophosphate induced coordinate up-regulation or de novo induction of oligodendrocyte phenotypic markers with concomitant down-regulation of GFAP expression. Consistent with immunohistochemical studies, northern blot analysis demonstrated that both MBP and PLP mRNA were up-regulated in MO3.13 cells by PMA treatment. M03.13 cells provide an immortalized clonal model system suitable for study of gene expression subserving oligodendrocyte and astrocyte phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call