Abstract
Effects of dexamethasone (DEX) on the relative abundance of myelin basic protein (MBP), proteolipid protein (PLP) and glial fibrillary acidic protein (GFAP) mRNAs in the developing rat brain were examined. After DEX (1.0 mg/kg body weight) or saline was administered intraperitoneally to 3-day-old rats for 7 consecutive days, wet weight, DNA content and the relative abundance of the glia-specific mRNAs in cerebrum and cerebellum were analyzed at postnatal days (P) 10, 20 and 30. DEX decreased both wet weight and DNA content in cerebellum more profoundly than in cerebrum. The appearance of MBP, PLP and GFAP mRNAs in cerebellum preceded that in cerebrum in the control group. In cerebrum, the relative abundance of MBP and PLP mRNAs was significantly less in the DEX group than that in the control group at P20 and P30. The relative abundance of the GFAP mRNA was significantly less in the DEX group than in the control group at P10 and P20, but there was no significant difference at P30. In cerebellum, a significant decrease in the abundance of MBP, PLP and GFAP mRNAs in the DEX group was observed only at P10 but not at P20 and P30. Our findings indicate that DEX suppresses expression of genes related to glial functions, especially myelination when administered in the early postnatal period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.