Abstract
The mixed hexa-transition metal (hexa-TM) sandwiched arsenotungstate derivative, [CuI3(pz)2(phen)3]2[CuI(phen)2][{Na(H2O)2}{(VIV5CuIIO6)(AsIIIW9O33)2}]·6H2O (1) (pz = pyrazine; phen = 1,10-phenanthroline), has been hydrothermally synthesized and structurally characterized. In compound 1, two {AsW9O33} clusters are connected by mixed hexa-TM ring unit {VVI5CuIIO6} to form a sandwich-type dimer, which are further bonded in "ABAB" mode by the {Na(H2O)2} linker resulting in pure inorganic chains. The unique "L-shaped" trinuclear complex {Cu3(phen)3(pz)2} is supported together via staggered π-π interactions to generate extending waveform two-dimensional supramolecular layers, which are further aggregated with their adjacent analogues by complexes {Cu(phen)2} via H-bonding interaction to yield an unprecedented three-dimensional (3D) metal-organic networks with one-dimensional (1D) cavities. The pure inorganic 1D sandwich chains are implanted in the cavities as guest units via supramolecular interactions to form a POMOF 3D framework. Compound 1, as the electrode of the supercapacitor, exhibits higher specific capacitances (825 F g-1 at a current density of 2.4 A g-1), better rate capability, more durable cyclic stability (91.4% of cycle efficiency after 3000 cycles), and improved conductivity and electroactivity compared to those of parent polyoxometalate (POM) Na9[AsW9O33]·19H2O (2) and 6-Cu-substituted POM [Cu6(imi)6{AsIIIW9O30Cl3}2]·6H2O (3), which may be attributed to the introduction of V4+, the unique host-guest structure, and the rich π electron system. In addition, compound 1 exhibits dual-function electrocatalytic behavior in reducing inorganic salt IO3- and oxidizing the organic molecule dopamine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.