Abstract

Abstract Hollow waveguides are promising candidates for applications in sensing and high-power transmission. Flexible design and cost effective fabrication of hollow waveguides make it possible to realize integrated devices with small temperature dependence, tight control on optical confinement and tailorable characteristics. One of the potential applications of hollow waveguide is a tunable Bragg reflector, which can be used as building block for integrated photonics. In this review, integrated tunable Bragg reflector based on hollow-core optical waveguide is reviewed and presented; this Bragg reflector offers variable characteristics and design flexibility for applications in reconfigurable integrated photonic devices and circuits. Variety of tunable optical functions can be realized with on-chip Bragg reflector based on hollow waveguide, few of them are discussed in this review. Ultra-wide tuning in Bragg wavelength and on-chip polarization control can be realized using 3D hollow waveguide. A tapered 3D hollow waveguide Bragg reflector for an adjustable compensation of polarization mode dispersion (PMD) is then discussed. The utilization of a high-index contrast grating in hollow waveguide is demonstrated to reduce the polarization dependence and reflection-bandwidth. The polarization- and bandwidth control may be useful for realizing polarization insensitive devices and semiconductor lasers with ultra-wide tuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call