Abstract
In recent years an increasing number of countries have implemented policy measures to promote renewable energy. However, the most important problem that the policy makers face with is the conflicting linguistic terms and subjective opinions on energy and environment policy. As the environmental policy and energy policy always go hand in hand, it is quite clear that wind as a renewable resource should be competitive with conventional power generation sources. From technical, environmental, socio-economical and socio-political standpoint, wind power is the most deserving of all of the cleaner energy production options (geothermal, solar, tidal, biomass, hydro) for more widespread deployment. Although wind power is a never ending green resource, assessment of environmental risks and impactswhich comprise the backbone of environmental policyin the context of specific projects or sites often are necessary to explicate and weigh the environmental trade-offs that are involved. In the case of wind farms, a number of turbines (ranging from about 250 kW to 750 kW) are connected together to generate large amounts of power. Apart from the constraints resulting from the number of turbines, any site selection should think over the technical, economic, social, environmental and political aspects. Each aspect uses criteria for its own evaluation. Decision making by using multi criteria decision analysis is an attractive solution for obtaining an integrated decision making result. Although Lee et al. (2009), Kaya and Kahraman (2010) and Tegou et al. (2010) has studied wind farm site selection by using different kinds of Analytic Hierarchy Process (AHP), Cheng’s extent analysis of Fuzzy AHP (FAHP) is used in this study and a holistic hierarchy were developed. The analytic hierarchy process (AHP) is a multi-criteria decision making tool to deal with complex, unstructured and multi-attribute problems. This method is distinguished from other multi-criteria methods in three ways: I. Construction of the hierarchy structure II. Pairwise comparisons of different criteria III. Weighing with respective to the overall objective. In AHP, decision makers quantify the importance of criteria by using Cheng’s 1-9 scale. To overcome the disadvantage of reluctant and inconsistent comparison judgments, fuzzy analytic hierarchy process (FAHP) might be used on each factor to determine the weight of fuzziness of its attributes. Hierarchy structure diagram of wind farm site selection is given in Figure 1. This study aims to apply the FAHP to find priority sequence of alternatives and obtain the key success factors for the selection of appropriate sites of wind farms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.