Abstract

We consider Holder continuous circulant (2 × 2) matrix functions \({{\bf G}^1_2}\) defined on the fractal boundary Γ of a Jordan domain Ω in \({\mathbb{R}^{2n}}\). The main goal is to establish a Hilbert transform for such functions, within the framework of Hermitian Clifford analysis. This is a higher dimensional function theory centered around the simultaneous null solutions of two first order vector valued differential operators, called Hermitian Dirac operators. In Brackx et al. (Bull Braz Math Soc 40(3): 395–416, 2009) a Hermitian Cauchy integral was constructed by means of a matrix approach using circulant (2 × 2) matrix functions, from which a Hilbert transform was derived in Brackx et al. (J Math Anal Appl 344: 1068–1078, 2008) for the case of domains with smooth boundary. However, crucial parts of the method are not extendable to the case where the boundary of the considered domain is fractal. At present we propose an alternative approach which will enable us to define a new Hermitian Hilbert transform in that case. As a consequence, we give necessary and sufficient conditions for the Hermitian monogenicity of a circulant matrix function \({{\bf G}^1_2}\) in the interior and exterior of Ω, in terms of its boundary value \({{\bf g}^1_2={\bf G}^1_2|_\Gamma}\), extending in this way also results of Abreu Blaya et al. (Bound. Value Probl. 2008: 2008) (article ID 425256), (article ID 385874), where Γ is required to be Ahlfors–David regular.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.