Abstract

The application of single nucleotide polymorphisms (SNPs) in plant breeding involves the analysis of a large number of samples, and therefore requires rapid, inexpensive and highly automated multiplex methods to genotype the sequence variants. We have optimized a high-throughput multiplexed SNP assay for eight polymorphisms which explain two agronomic and three grain quality traits in rice. Gene fragments coding for the agronomic traits plant height (semi-dwarf, sd-1) and blast disease resistance (Pi-ta) and the quality traits amylose content (waxy), gelatinization temperature (alk) and fragrance (fgr) were amplified in a multiplex polymerase chain reaction. A single base extension reaction carried out at the polymorphism responsible for each of these phenotypes within these genes generated extension products which were quantified by a matrix-assisted laser desorption ionization-time of flight system. The assay detects both SNPs and indels and is co-dominant, simultaneously detecting both homozygous and heterozygous samples in a multiplex system. This assay analyses eight functional polymorphisms in one 5 microL reaction, demonstrating the high-throughput and cost-effective capability of this system. At this conservative level of multiplexing, 3072 assays can be performed in a single 384-well microtitre plate, allowing the rapid production of valuable information for selection in rice breeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.