Abstract

Today’s switches and routers require high-speed and large-capacity packet buffers to guarantee a line rate up to 100 Gbps as well as more fine-grained quality of service. For this, this paper proposes an efficient parallel hybrid SRAM/DRAM architecture for high-bandwidth switches and routers. Tail SRAM and head SRAM are used for guaranteeing the middle DRAMs are accessed in a larger granularity to improve the bandwidth utilization. Then, a simple yet efficient memory management algorithm is designed. The memory space is dynamically allocated when a flow arrives, and a hard timeout is assigned for each queue. Hence, the SRAM space is utilized more efficiently. A queueing system is used to model the proposed method, and theoretical analysis is performed to optimize the timeout value. Simulation shows that the proposed architecture can reduce packet loss rate significantly compared with previous solutions with the same SRAM capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.