Abstract
In this paper we present a high-order Lagrangian-decoupling method for the unsteady convection diffusion and incompressible Navier-Stokes equations. The method is based upon Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem, implicit high-order backward-differentiation finite difference schemes for integration along characteristics, finite element or spectral element spatial discretizations and mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high-order accuracy and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have