Abstract
A highly stable framework of organic-inorganic hybrid zinc phosphite (NTOU-4) and its cobalt analogue (NTOU-4a) were synthesized under the hydro(solvo)thermal conditions and structurally characterized by single-crystal X-ray diffraction. Their frameworks consisted of inorganic metallophosphite chains, in which the metal atoms were interlinked through 1H-1,2,4-triazole-3,5-diamine and 1,4-benzenedicarboxylate linkers to form new crystalline materials. It is extremely difficult to achieve the consolidation of three distinct coordinations of metal-carboxylate, metal-triazolate, and metal-phosphite bonds into one crystal, resulting in the synthesis of the first mixed-ligand terephthalate-metallophosphite solids in the absence of organic molecules as templates or space-filling counters in their structures. Interestingly, the zinc compound not only exhibits high thermal stability (up to 400 °C in air) and chemical resistance to seawater, aqueous solutions (pH 3-11), and organic solvents at boiling conditions, but also shows selective removal, recovery, and "turn-on" sensing abilities of toxic mercury ions in aqueous solutions. Furthermore, the synthesis, characterization, and the difference of the framework stabilities between isostructural zinc and cobalt compounds are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.