Abstract

CuS nanosheets modified Cu2O/CuO nanowire arrays (NWAs) were successfully fabricated on Cu foil by in-situ growth and successive ionic layer adsorption and reaction (SILAR) methods without binders. The three-dimensional Cu2O/CuO NWAs not only showed strong binding force with current collector but also provided abundant surface area to support CuS nanosheets. Different morphologies of CuS were obtained by varying the Cu(NO3)2 and Na2S concentrations and the SILAR cycle. When these step-wise prepared products were employed for non-enzymatic glucose sensing, the amperometric response of the optimized CuS/Cu2O/CuO/Cu electrode was approximately twice of that of Cu2O/CuO/Cu electrode. The result is attributed to the modification of CuS nanosheets with suitable amount which increases the active surface area of the electrode. This designed electrode presents an ultrahigh sensitivity of 4262 μA mM−1 cm−2 in the range from 0.002 to 4.096 mM, as well as the excellent selectivity, reproducibility and stability. Moreover, due to the facile preparation and the low cost of Cu based sensors, the CuS/Cu2O/CuO/Cu electrode will be one kind of promising materials for constructing practical non-enzymatic glucose sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.