Abstract

Thrombin plays a critical role in hemostasis and hemolysis, and is a significant biomarker for blood-related diseases. Detection and inhibitors screening of thrombin are essential in medical research. In this study, we developed a fluorescent sensor based on the interaction between quantum dots (QDs) and fibrinogen (Fib) for thrombin detection and its inhibitors screening. Upon the presence of thrombin, the fibrinogen of soluble QDs-Fib were converted into insoluble fibrin precipitate, causing a change of fluorescence intensity in the supernatant. Under optimized conditions, our method exhibited an excellent linearity (R2 ≥0.99) over the range of 2∼100 U/L with a limit of detection (LOD) as low as 0.29 U/L. Moreover, we employed this method to screen for thrombin inhibitors using dabigatran as an exemplary direct thrombin inhibitor (DTI), even at concentrations as low as 1 nM. Finally, the established method was successfully used to screen thrombin inhibitors in 23 different extracts from Eupolyphaga sinensis walker. The method provided not only a sensitive, specific and high throughput assay for the detection of thrombin activity in biological samples, but also a reliable strategy for the screening of thrombin inhibitors in complex matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.