Abstract
Emerging evidence has suggested that bexarotene, a nearly 20-year-old skin cancer drug, may be a potential drug candidate to treat Alzheimer's disease (AD) and other neurodegenerative disorders. As described in this study, a highly sensitive and rapid method, using liquid chromatography–tandem mass spectrometry (LC–MS/MS) to determine bexarotene in mouse plasma and brain tissue, was established and validated for the first time. Single-step protein precipitation utilizing methanol solution (containing 0.05 % acetic acid) as precipitation agent was employed to prepare the samples of plasma and brain tissue. Chromatographic separation in gradient elution mode was conducted via an Agilent ZORBAX SB-C18 column (50 mm × 4.6 mm, 5 µm) employing methanol–ammonium acetate buffer (5 mM, pH adjusted to 4.6 with acetic acid) as mobile phase which flowed at 0.45 mL/min. The total run time was 6 min for each sample. Detection through mass spectrometric technique was operated by selected reaction monitoring (SRM) in negative electrospray ionization mode. The method was linear within the range of 10.0–15000 ng/mL for plasma and 10.0–600 ng/mL for brain tissue homogenate with the lower limit of quantification of 10.0 ng/ml. The plasma or tissue homogenate was only required 20 μL. The intra- and inter-day precision were less than 13.8 %, and the RE was between –7.4 % and 3.4 %. The method was applied to investigate the plasma pharmacokinetics and brain distribution of bexarotene in mice after being intragastrically administered with bexarotene at the dosage of 100 mg/kg. The results showed that both brain and plasma concentrations of bexarotene peaked at 1.0 h. Bexarotene was rapidly eliminated with a half-life of 2.0 h.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have