Abstract

We describe an ultrafast photonic switched interconnect based upon technologies developed for optical time division multiplexing (OTDM). The system uses a time-interleaved broadcast-and-select star architecture that is functionally equivalent to a crossbar switch. The interconnect offers full connectivity and low uniform latency among the input and output ports. The enabling technologies include ultrafast gated time slot tuners and all-optical demultiplexers. By utilizing these advanced optical technologies, it is possible to construct a highly scalable, rapidly reconfigurable, ultra-high-speed switch with performance beyond the capacity of current electronics. In the experimental demonstration, we constructed an interconnect with a peak bit rate of 100 Gh/s and the capability of connecting 16 OTDM ports. The system successfully demonstrated error-free operation of 100 Gb/s-multiplexing and demultiplexing in addition to rapid inter-channel switching capability on the order of the single channel bit period. The system also supports multicasting functions among many nodes. To scale the system to accommodate a large number of ports, we provide an analysis of the coherent crosstalk requirements through the network to show the potential to support hundreds of ports within practical constraints of the optical components. We believe that this system offers an approach to meet the demands of high bandwidth and fast switching capability required in current high-speed lightwave networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.