Abstract

The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal. However, when the single channel bit rate increases beyond electronic speed limit, optical time division multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper the state of art, the advantages and drawbacks of the OTDM technology will be discussed in order to highlight its potentialities in different application scenarios for optical communications networks, and its perspectives in different temporal horizons. In detail, a recent experiment of a 160 Gbit/s OTDM system is presented. Furthermore, a photonic node architecture suitable for optical packet switching networks is proposed, and possible solutions for the implementation of all the required subsystems are presented and compared in order to optimize the node performance. In particular innovative schemes for optical add/drop multiplexer, optical logic gates, optical switches, and optical flip-flop are introduced with a particular emphasis on emerging nonlinear materials and enabling technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.