Abstract

Herein, a vinylene-linked covalent organic framework (TMT-BPDA-COF) was prepared via the Aldol condensation of 2,4,6-trimethyl-1,3,5-triazine (TMT) and 4,4'-biphenyl dimethyl formaldehyde (BPDA). TMT-BPDA-COF displayed high crystallinity and thermal stability, and robust chemical stability in strong acid, strong base and common organic solvents. TMT-BPDA-COF nanosheets emitted strong yellow fluorescence with the quantum yield of 14.9% and showed fast reversible response toward pH with a wide range (pH 0.0 ∼ 14.0) based on the intramolecular charge transfer effect. Furthermore, portable fluorescent sensors were prepared by incorporated TMT-BPDA-COF nanosheets into agarose gel and cellulose acetate butyrate (CAB), respectively. TMT-BPDA-COF gel showed a wide pH response range over pH 0.0 ∼ 14.0 with a linear range of pH 4.0 ∼ 14.0. TMT-BPDA-COF CAB film exhibited high sensitivity for sensing of NH3 gas with a limit of detection of 1.6 ppb. TMT-BPDA-COF agarose gel and CAB film also exhibited good reversibility and reproducibility in response to pH and NH3 gas, respectively. We expect TMT-BPDA-COF-based sensors, which feature fast response, high sensitivity, wide response range, good reproducibility and reversibility, can apply to detect pH and NH3 gas in the field of environment and industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call