Abstract

This paper presents a mostly digital multiplying delay-locked loop (MDLL) architecture that leverages a new time-to-digital converter (TDC) and a correlated double-sampling technique to achieve subpicosecond jitter performance. The key benefit of the proposed structure is that it provides a highly digital technique to reduce deterministic jitter in the MDLL output with low sensitivity to mismatch and offset in the associated tuning circuits. The TDC structure, which is based on a gated ring oscillator (GRO), is expected to benefit other PLL/DLL applications as well due to the fact that it scrambles and first-order noise shapes its associated quantization noise. Measured results are presented of a custom MDLL prototype that multiplies a 50 MHz reference frequency to 1.6 GHz with 928 fs rms jitter performance. The prototype consists of two 0.13 mum integrated circuits, which have a combined active area of 0.06 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and a combined core power of 5.1 mW, in addition to an FPGA board, a discrete DAC, and a simple RC filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.