Abstract

Dielectric thin films having high permittivity (high-k) and low dielectric loss is essential for developing high performance capacitive devices like metal oxide field effect transistor or thin film transistor. Ga ion implantation performed on Cu-doped ZnO film fabricated by pulsed laser deposition with optimized doping concentrations and post-implantation annealing yielded film having high permittivity and low dielectric loss (ε = 87 and tan δ = 0.17 at the frequency of 1 kHz). Moreover, the permittivity exhibits good stability over a wide range of frequency from 20 Hz to 10 MHz. The high-k film was characterized by detailed dielectric studies, including frequency dependence of permittivity and dielectric loss, complex electrical modulus analysis, impedance spectroscopy and ac conductivity. The enhancement of the permittivity was attributed to the correlated potential barrier hopping of electrons between the neighboring acceptor-donor defect complex states in the band gap created by the co-doping, thus acting as electric dipoles polarizing the film. This work opens up future possibility for ‘dielectric engineering’. The three-dimensional dielectric spatial profile can be controlled via the selective area ion implantation with the depth controlled by the ion implantation energy. • A high-k Ga-Cu co-doped ZnO film formed via pulsed laser deposition and ion implantation method. • Optimized doping concentrations yielded high permittivity and low dielectric loss (ε=87 and tan δ=0.17 at 1 kHz). • Enhancement of permittivity was attributed to the correlated barrier hopping of electrons between neighboring defect complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.