Abstract

In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic Lagrangian interpolation on each subdomain. The convergence of the high-order numerical scheme is rigorously established. We prove that the numerical solution converges to the exact solution with the optimal convergence order O(hx4−α+hy4−β) for 0<α,β<1. Finally, experiments with four numerical examples are shown, to support the theoretical findings and to illustrate the efficiency of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.