Abstract

Wind energy is an important and promising renewable energy for the sustainable development of society. However, considering the limitations of device structures, collection of low-speed wind energy by triboelectric nanogenerators (TENGs) still faces some challenges such as huge energy loss, destructive friction wear and restrictions of onset wind speed. To solve these problems, we have developed a novel-designed TENG based on flow-induced vibration (FIV) effect (FIV-TENG). Distinguishing from previous wind-driven TENGs, the TENG components of this device are packaged in a bluff body and connected with a cantilever beam. This unique design not only separates the TENG units from the wind-driven part to free from environmental disruptions, but also avoids the great rotation resistance and friction wear in the ordinary designed TENG-based wind energy harvesters. Benefiting from the novel configuration, this FIV-TENG can be easily triggered by wind and delivers an excellent electrical output. The output performance of the as-fabricated device is systematically investigated under wind speeds ranging from light breeze to moderate gale, and a theoretical model is constructed to further understand the working mechanism and oscillating behaviors of the FIV-TENG. Additionally, structural parameters of the device have been optimized to achieve an optimal energy production, and the stability when working in harsh environment is also investigated. The creative device structure realizes the superior robustness and reliability, and also provides an efficient approach to realizing practical wind energy harvesting and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.