Abstract

ATP synthase, a highly conserved protein complex that has a subunit composition of α3 β3 γδεab2 c8-15 for the bacterial enzyme, is a key player in supplying energy to living organisms. This protein complex consists of a peripheral F1 sector (α3 β3 γδε) and a membrane-integrated Fo sector (ab2 c8-15 ). Structural analyses of the isolated protein components revealed that, remarkably, the C-terminal domain of its ε-subunit seems to adopt two dramatically different structures, but the physiological relevance of this conformational change remains largely unknown. In an attempt to decipher this, we developed a high-throughput invivo protein photo-cross-linking analysis pipeline based on the introduction of the unnatural amino acid into the target protein via the scarless genome-targeted site-directed mutagenesis technique, and probing the cross-linked products via the high-throughput polyacrylamide gel electrophoresis technique. Employing this pipeline, we examined the interactions involving the C-terminal helix of the ε-subunit in cells living under a variety of experimental conditions. These studies enabled us to uncover that the bacterial ATP synthase exists as an equilibrium between the 'inserted' and 'noninserted' state in cells, maintaining a moderate but significant level of net ATP synthesis when shifting to the former upon exposing to unfavorable energetically stressful conditions. Such a mechanism allows the bacterial ATP synthases to proportionally and instantly switch between two reversible functional states in responding to changing environmental conditions. Importantly, this high-throughput approach could allow us to decipher the physiological relevance of protein-protein interactions identified under invitro conditions or to unveil novel physiological context-dependent protein-protein interactions that are unknown before.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.