Abstract

Pushed by the ever-increasing demand of high-speed connectivity, next generation 400 Gb/s electrical links are targeting PAM-4 modulation to limit channel loss and preserve link budget. Compared to NRZ, a higher amplitude is desirable to counteract the 1/3 reduction of PAM-4 vertical eye opening. However, linearity is also key, and PAM-4 levels must be precisely spaced to preserve the horizontal eye opening advantage it has over NRZ. This paper presents a 45 Gb/s PAM-4 transmitter able to deliver a very large output swing with enhanced linearity and state-of-the-art efficiency. Built around a hybrid combination of current-mode and voltage-mode topologies, the driver is embedded into a 4-taps 5-bits feed-forward equalizer (FFE), and allows tuning the output impedance to ensure good source termination. Implemented in 28 nm CMOS FDSOI process, the full transmitter includes a half-rate serializer, duty-cycle correction circuit, $>>2$ kV HBM ESD diodes, and delivers a full swing of 1.3 Vppd at 45 Gb/s, while drawing only 120 mA from 1 V supply. The power efficiency is $\sim ~2$ times better than previously reported PAM-4 transmitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.