Abstract

This paper presents a 6-bit 20-MS/s high spurious-free dynamic range (SFDR) and low power successive approximation register analog to digital converter (SAR ADC) for the radio-frequency (RF) transceiver front-end, especially for wireless sensor network (WSN) applications. This ADC adopts the modified common-centroid symmetry layout and the successive approximation register reset circuit to improve the linearity and dynamic range. Prototyped in a 0.18-μm 1P6M CMOS technology, the ADC performs a peak SFDR of 55.32 dB and effective number of bits (ENOB) of 5.1 bit for 10 MS/s. At the sample rate of 20 MS/s and the Nyquist input frequency, the 47.39-dB SFDR and 4.6-ENOB are achieved. The differential nonlinearity (DNL) is less than 0.83 LSB and the integral nonlinearity (INL) is less than 0.82 LSB. The experimental results indicate that this SAR ADC consumes a total of 522 μW power and occupies 0.98 mm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.