Abstract

An ion optical design of a high resolution multi-turn time-of-flight mass analyzer (MT-TOF MA) is presented. The analyzer has rotationally symmetric main electrodes with additional mirror symmetry about a mid-plane orthogonal to the axis of symmetry. Rotational symmetry allows a higher density of turns in the azimuthal (drift) direction compared to MT-TOF MAs that are linearly extended in the drift direction. Mirror symmetry about a mid-plane helps to achieve a high spatial isochronicity of the ions’ motion. The analyzer comprises a pair of polar-toroidal sectors S1 and S3, a pair of polar (trans-axial) lenses, and a pair of conical lenses for longitudinal and lateral focusing. A toroidal sector S2 located at the mid-plane of the analyzer has a set of embedded drift focusing segments providing focusing and spatial isochronicity in the drift direction. The ions’ drift in the azimuthal direction can be reversed by using dedicated reversing deflectors. This gives the possibility of several operational modes with different numbers of turns and passes in the drift direction. According to numerical simulations, the mass resolving power of the analyzer ranges from [Formula: see text]40 k (fwhm) at small (typically below ten) numbers of turns to [Formula: see text]450 k (fwhm) at 96 turns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call