Abstract

In this study, we developed an imaging system that can acquire and produce high-resolution hyperspectral images of the retina. Our system combines the view from a high-resolution RGB camera and a snapshot hyperspectral camera together. The method is fast and can be constructed into a compact imaging device. We tested our system by imaging a calibrated color chart, biological tissues ex vivo, and a phantom of the human retina. By using image pansharpening methods, we were able to produce a high-resolution hyperspectral image. The images from the hyperspectral camera alone have a spatial resolution of 0.2 mm/pixel, whereas the pansharpened images have a spatial resolution of 0.1 mm/pixel, a 2x increase in spatial resolution. Our method has the potential to capture images of the retina rapidly. Our method preserves both the spatial and spectral fidelity, as shown by comparing the original hyperspectral images with the pansharpened images. The high-resolution hyperspectral imaging device can have a variety of applications in retina examinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call