Abstract

The static random-access memory (SRAM) cells used in the high radiation environment of aerospace have become highly vulnerable to single-event effects (SEE). Therefore, a 12T SRAM-hardened circuit (RHB-12T cell) for the soft error recovery is proposed using the radiation hardening design (RHBD) concept. To verify the performance of the RHB-12T, the proposed cell is simulated by the 28 nm CMOS process and compared with other hardened cells (Quatro-10T, WE-Quatro-12T, RHM-12T, RHD-12T, and RSP-14T). The simulation results show that the RHB-12T cell can recover not only from single-event upset caused by their sensitive nodes but also from single-event multi-node upset caused by their storage node pairs. The proposed cell exhibits 1.14×/1.23×/1.06× shorter read delay than Quatro-10T/WE-Quatro-12T/RSP-14T and 1.31×/1.11×/1.18×/1.37× shorter write delay than WE-Quatro-12T/RHM-12T/RHD-12T/RSP-14T. It also shows 1.35×/1.11×/1.04× higher read stability than Quatro-10T/RHM-12T/RHD-12T and 1.12×/1.04×/1.09× higher write ability than RHM-12T/RHD-12T/RSP-14T. All these improvements are achieved at the cost of a slightly larger area and power consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call