Abstract
Based on the high precision direct (HPD) integration scheme for linear systems, a high precision direct integration scheme for nonlinear (HPD-NL) dynamic systems is developed. The method retains all the advantages of the standard HPD scheme (high precision with large time-steps and computational efficiency) while allowing nonlinearities to be introduced with little additional computational effort. In addition, limitations on minimum time step resulting from the approximation that load varies linearly between time-steps are reduced by introducing a polynomial approximation of the load. This means that, in situations where a rapidly varying or transient dynamic load occurs, a larger time-step can still be used while maintaining a good approximation of the forcing function and, hence, the accuracy of the solution. Numerical examples of the HPD-NL scheme compared with Newmark’s method and the fourth-order Runge–Kutta (Kutta 4) method are presented. The examples demonstrate the high accuracy and numerical efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.